1,579 research outputs found

    SR-FTiR microscopy and FTIR imaging in the earth sciences

    Full text link
    During the last decades, several books have been devoted to the application of spectroscopic methods in mineralogy. Several short courses and meetings have addressed particular aspects of spectroscopy, such as the analysis of hydrous components in minerals and Earth materials. In these books, complete treatment of the infrared theory and practical aspects of instrumentation and methods, along with an exhaustive list of references, can be found. The present chapter is intended to cover those aspects of infrared spectroscopy that have been developed in the past decade and are not included in earlier reviews such as Volume 18 of Reviews in Mineralogy. These new topics involve primarily: (1) the use of synchrotron radiation (SR), which, although not a routine method, is now rather extensively applied in infrared studies, in particular those requiring ultimate spatial and time resolution and the analysis of extremely small samples (a few tens of micrometers); (2) the development of imaging techniques also for foreseen time resolved studies of geo-mineralogical processes and environmental studies.Comment: 36 pages, 24 figures - Reviews in Mineralogy & Geochemistry - Vol. 78 (2013) in pres

    Effect of gait speed on trajectory prediction using deep learning models for exoskeleton applications

    Get PDF
    Gait speed is an important biomechanical determinant of gait patterns, with joint kinematics being influenced by it. This study aims to explore the effectiveness of fully connected neural networks (FCNNs), with a potential application for exoskeleton control, in predicting gait trajectories at varying speeds (specifically, hip, knee, and ankle angles in the sagittal plane for both limbs). This study is based on a dataset from 22 healthy adults walking at 28 different speeds ranging from 0.5 to 1.85 m/s. Four FCNNs (a generalised-speed model, a low-speed model, a high-speed model, and a low-high-speed model) are evaluated to assess their predictive performance on gait speeds included in the training speed range and on speeds that have been excluded from it. The evaluation involves short-term (one-step-ahead) predictions and long-term (200-time-step) recursive predictions. The results show that the performance of the low- and high-speed models, measured using the mean absolute error (MAE), decreased by approximately 43.7% to 90.7% when tested on the excluded speeds. Meanwhile, when tested on the excluded medium speeds, the performance of the low-high-speed model improved by 2.8% for short-term predictions and 9.8% for long-term predictions. These findings suggest that FCNNs are capable of interpolating to speeds within the maximum and minimum training speed ranges, even if not explicitly trained on those speeds. However, their predictive performance decreases for gaits at speeds beyond or below the maximum and minimum training speed ranges

    A New Approach to Transport Coefficients in the Quantum Spin Hall Effect

    Get PDF
    We investigate some foundational issues in the quantum theory of spin transport, in the general case when the unperturbed Hamiltonian operator H does not commute with the spin operator in view of Rashba interactions, as in the typical models for the quantum spin Hall effect. A gapped periodic one-particle Hamiltonian H is perturbed by adding a constant electric field of intensity ε≪ 1 in the j-th direction, and the linear response in terms of a S-current in the i-th direction is computed, where S is a generalized spin operator. We derive a general formula for the spin conductivity that covers both the choice of the conventional and of the proper spin current operator. We investigate the independence of the spin conductivity from the choice of the fundamental cell (unit cell consistency), and we isolate a subclass of discrete periodic models where the conventional and the proper S-conductivity agree, thus showing that the controversy about the choice of the spin current operator is immaterial as far as models in this class are concerned. As a consequence of the general theory, we obtain that whenever the spin is (almost) conserved, the spin conductivity is (approximately) equal to the spin-Chern number. The method relies on the characterization of a non-equilibrium almost-stationary state (NEASS), which well approximates the physical state of the system (in the sense of space-adiabatic perturbation theory) and allows moreover to compute the response of the adiabatic S-current as the trace per unit volume of the S-current operator times the NEASS. This technique can be applied in a general framework, which includes both discrete and continuum models

    A Dimerized HMX1 Inhibits EPHA6/epha4b in Mouse and Zebrafish Retinas.

    Get PDF
    HMX1 is a homeobox-containing transcription factor implicated in eye development and responsible for the oculo-auricular syndrome of Schorderet-Munier-Franceschetti. HMX1 is composed of two exons with three conserved domains in exon 2, a homeobox and two domains called SD1 and SD2. The function of the latter two domains remains unknown. During retinal development, HMX1 is expressed in a polarized manner and thus seems to play a role in the establishment of retinal polarity although its exact role and mode of action in eye development are unknown. Here, we demonstrated that HMX1 dimerized and that the SD1 and homeodomains are required for this function. In addition, we showed that proper nuclear localization requires the presence of the homeodomain. We also identified that EPHA6, a gene implicated in retinal axon guidance, is one of its targets in eye development and showed that a dimerized HMX1 is needed to inhibit EPHA6 expression

    The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 1: modifications to the androgen receptor

    Get PDF
    Prostate cancer is the second most common male malignancy in the western world an increasing incidence in an ageing population. Treatment of advanced prostate cancer relies on androgen deprivation. Although the majority of patients initially respond favourably to androgen deprivation therapy, the mean time to relapse is 12-18 months. Currently there are few treatments available for men who have developed resistance to hormone therapy, due to the lack of understanding of the molecular mechanisms underlying development of this disease. Recently, however, major advances have been made in understanding both androgen receptor (AR) dependent and independent pathways which promote development of hormone resistant prostate cancer. This review will focus on modifications to the AR and associated pathways. Molecular modifications to the androgen receptor itself, e.g. mutations and/or amplification, although involved in the development of hormone resistance cannot explain all cases. Phosphorylation of AR, via either Ras/MAP kinase or PI3K/Akt signal transduction pathways, have been shown to activate AR in both a ligand (androgen) dependent and independent fashion. During this review we will discuss the clinical evidence to support AR dependent pathways as mediators of hormone resistance

    Microwave broadband characterization of aging of SU-8 polymer as CPW substrate

    Get PDF
    In this paper we present the methodology and the numerical results related to the analysis of aging of the SU- 8 polymer when used as a primary layer for the realization of Coplanar Waveguide (CPW) structures. As test devices, we used a set of transmission lines with different lengths and T-shaped open stubs shunt resonators; by using these geometries, we are able to acquire the data in a broadband range, in principle between 1 GHz and 40 GHz. We conduct the analysis by comparing two different technology run: the first wafer with a deposited layer by a 12-year-old SU-8 and the second wafer, with the same photolithographed metallic geometries, with a brand-new processed SU-8 photoresist

    A Novel Highly Symmetric TM01 Mode Launcher for Ultimate Brightness Applications

    Get PDF
    The R&D of high gradient radiofrequency (RF) devices is aimed to develop innovative accelerating structures based on new manufacturing techniques and materials in order to construct devices operating with the highest accelerating gradient. Recent studies have shown a large increase in the maximum sustained RF surface electric fields in copper structures operating at cryogenic temperatures. These novel approaches allow significant performance improvements of RF photoinjectors. Indeed the operation at high surface fields results in considerable increase of electron beam brilliance. This enhancement requires high field quality in the RF photoinjector and, specifically in the design of the power coupler. In this work we present a novel device for the RF photoinjector: a compact X-band TM01 mode launcher with a fourfold symmetry which minimizes both dipole and quadrupole RF components

    Design optimization of meta-material transmission lines for linear and non-linear microwave signal processing

    Get PDF
    The possibility to use CRLH (Composite Right-/Left-Handed) cells to realize both distributed wide-band filters for linear signal processing and non-linear devices like frequency doublers is investigated analytically and numerically. Full-wave electromagnetic simulations are performed for the filtering structure by means of a commercial software package and confirm the validity of the analytic results. Numerical results for CRLH NLTL (Non-Linear Transmission Line) obtained by using the Microwave Office are discussed, providing design considerations about the synthesis of such a component

    Scattering by Interstellar Dust Grains. II. X-Rays

    Full text link
    Scattering and absorption of X-rays by interstellar dust is calculated for a model consisting of carbonaceous grains and amorphous silicate grains. The calculations employ realistic dielectric functions with structure near X-ray absorption edges, with resulting features in absorption, scattering, and extinction. Differential scattering cross sections are calculated for energies between 0.3 and 10 keV. The median scattering angle is given as a function of energy, and simple but accurate approximations are found for the X-ray scattering properties of the dust mixture, as well as for the angular distribution of the scattered X-ray halo for dust with simple spatial distributions. Observational estimates of the X-ray scattering optical depth are compared to model predictions. Observations of X-ray halos to test interstellar dust grain models are best carried out using extragalactic point sources.Comment: ApJ, accepted. 27 pages, 12 figures. Much of this material was previously presented in astro-ph/0304060v1,v2,v3 but has been separated into the present article following recommendation by the refere

    Development of a CO2 sensor for extracorporeal life support applications

    Get PDF
    Measurement of carbon dioxide (CO2) in medical applications is a well-established method for monitoring patient’s pulmonary function in a noninvasive way widely used in emergency, intensive care, and during anesthesia. Even in extracorporeal-life support applications, such as Extracorporeal Carbon Dioxide Removal (ECCO2R), Extracorporeal Membrane Oxygenation (ECMO), and cardiopulmonary by-pass (CPB), measurement of the CO2 concentration in the membrane oxygenator exhaust gas is proven to be useful to evaluate the treatment progress as well as the performance of the membrane oxygenator. In this paper, we present a new optical sensor specifically designed for the measurement of CO2 concentration in oxygenator exhaust gas. Further, the developed sensor allows measurement of the gas flow applied to the membrane oxygenator as well as the estimation of the CO2 removal rate. A heating module is implemented within the sensor to avoid water vapor condensation. Effects of temperature on the sensor optical elements of the sensors are disclosed, as well as a method to avoid signal–temperature dependency. The newly developed sensor has been tested and compared against a reference device routinely used in clinical practice in both laboratory and in vivo conditions. Results show that sensor accuracy fulfills the requirements of the ISO standard, and that is suitable for clinical applications
    corecore